
Software Construction

• More than just programming

• Involves design

• Team organization

– Who works on what?

• Often matches code organization/modularization

– SCM implications



Construction Best Practices

• Assertive programming

– Test-driven development

– Design-by-Contract

• Refactoring

• Communication

– Reviews, pair-programming, stand-up meetings

• Know one development environment well

• Coding standards 

– http://java.sun.com/docs/codeconv/html/CodeConvTOC.doc.html



Refactoring

• Software is more like gardening than construction

• Refactoring: changing the internal structure of 

code without changing its external behavior

– Don’t try to refactor and add functionality at the same 

time

– Have good tests and run them often when refactoring

– Take short, deliberate steps

• Become familiar with automated refactoring tools

• See www.refactoring.com



Pragmatic Programmer: Tip 4

• Don’t Live with Broken Windows

• What are Broken Windows in Software?

– Bad designs, wrong decisions, poor code, no 

tests; beginning of software entropy

• If you don’t have time to fix it what do you 

do?

– Board it up, i.e. remove it or declare it as “not 

implemented”



Pragmatic Programmer: Tip 11

• DRY - Don’t Repeat Yourself

• Avoid cut-and-paste 

– Refactor to reusable code instead



Minimize Complexity and Coupling; 

Maximize Cohesion

• Complexity

– Organize into modules 

• Abstract at all levels

– Keep code simple and readable 

• Coupling

– Use interfaces, Law of Demeter

• Cohesion

– Keep methods short

– Don’t let classes get too big



Law of Demeter

• Any method of an object should call only 

methods belonging to:

– Itself

– Any parameters that were passed in to the 

method

– Any objects it created

– Any directly held component objects

• i.e. don’t use objects to get other objects


