J

Software Construction

e More than just programming
e Involves design

e Team organization

— Who works on what?

e Often matches code organization/modularization

— SCM implications

CALPOLY



J

Construction Best Practices

e Assertive programming
— Test-driven development

— Design-by-Contract
e Refactoring
e Communication

— Reviews, pair-programming, stand-up meetings
 Know one development environment well

e Coding standards
— http://java.sun.com/docs/codeconv/html/CodeConvTOC.doc.html

CALPOLY




]

Retactoring

e Software 1s more like gardening than construction

e Refactoring: changing the internal structure of
code without changing its external behavior

— Don’t try to refactor and add functionality at the same
fime

— Have good tests and run them often when refactoring

— Take short, deliberate steps

 Become familiar with automated refactoring tools

 See www.refactoring.com

CALPOLY




]

Pragmatic Programmer: Tip 4

e Don’t Live with Broken Windows

e What are Broken Windows 1in Software?

— Bad designs, wrong decisions, poor code, no
tests; beginning of software entropy

e If you don’t have time to fix it what do you
do?

— Board it up, 1.e. remove it or declare it as “not
implemented”

CALPOLY




J

Pragmatic Programmer: Tip 11

e DRY - Don’t Repeat Yourself
e Avoid cut-and-paste

— Refactor to reusable code instead

CALPOLY



]

Minimize Complexity and Coupling;
Maximize Cohesion

e Complexity
— Organize into modules
e Abstract at all levels

— Keep code simple and readable
e Coupling
— Use interfaces, Law of Demeter

e Cohesion
— Keep methods short
— Don’t let classes get too big

CALPOLY




]

[.aw of Demeter

 Any method of an object should call only
methods belonging to:

— Itself

— Any parameters that were passed in to the
method

— Any objects it created
— Any directly held component objects

e 1.e. don’t use objects to get other objects

CALPOLY




